
Development of a Sound Plugin for

SetlX

and Implementation of a Composition Algorithm

Student Research Project

Course of Studies Applied Computer Science

Cooperative State University Mannheim

by

Lukas Retschmeier

Hand over: June 4, 2018
Time of Editing: 12 Wochen
Matriculation Number, Course: 1339518, TINF15/AI-BI
Company: Atos It Solutions and Services GmbH
Scienti�c tutor: Prof. Dr. Karl Stroetmann

© Lukas Retschmeier 2018

Abstract

This paper documents the work of Lukas Retschmeier during his student research project.

The document shows how a sound plugin for the high-level programming language SetlX

was developed. Therefore an external music framework was tethered to SetlX and

can now be accessed with new user-de�ned functions from the interpreter. In order to

demonstrate the capabilities of these new functionalities the Mozart Dicing Game was

implemented in native SetlX . This document also provides detailed documentation

about how this plugin can be used.

I

Contents

List of Figures V

1 Introduction 1

1.1 Scope of the Document . 2
1.2 Purpose of the Document . 2
1.3 Prerequisites . 2

2 Theory 3

2.1 What is SetlX ? . 3
2.2 MIDI File Format . 3
2.3 The JFugue 5.0 Java Framework . 4

2.3.1 Functionalities . 4
2.3.2 Advantages over JMusic . 4
2.3.3 A Simple JFugue Example . 5

2.4 Using JFugue MusicString . 6
2.4.1 Octaves . 6
2.4.2 Duration . 6
2.4.3 Chords . 7
2.4.4 MusicString . 8

2.4.4.1 Additional Information 8
2.4.4.2 Examples For MusicString 9

2.4.5 Progressions . 9
2.4.5.1 Example: Pop Progression 11

2.4.6 Triplets . 12

II

3 Method 13

3.1 Development Environment . 13
3.1.1 Setting up Directories for the Sound Plugin 13
3.1.2 Add Sound-Plugin as Maven Subproject 14
3.1.3 Modi�ying the Compilation Scripts 15

3.2 Integration of JFugue into SetlX . 16
3.2.1 JFugue 5.0 and maven . 16
3.2.2 Architecture . 17

3.2.2.1 Packages . 17
3.2.2.2 Data Flow Graph . 18
3.2.2.3 Storage for Music Information 19
3.2.2.4 Main Class . 20
3.2.2.5 User De�ned Functions 22

3.2.3 Exception Handling . 24
3.2.4 Application Programming Interface (API) 25

3.2.4.1 addChordProgression . 25
3.2.4.2 addPattern . 26
3.2.4.3 addPatternsToPattern 27
3.2.4.4 addRhythm . 27
3.2.4.5 addToPattern . 28
3.2.4.6 allChordsAs . 28
3.2.4.7 duplicatePattern . 28
3.2.4.8 eachChordAs . 29
3.2.4.9 getPatternStats . 29
3.2.4.10 loadMidi . 30
3.2.4.11 modifyPatternProperty 30
3.2.4.12 play . 31
3.2.4.13 playTone . 31
3.2.4.14 removeMusic . 33
3.2.4.15 saveAsMidi . 33
3.2.4.16 saveAsPattern . 34
3.2.4.17 setKeyForChordProgression 34
3.2.4.18 showMusic . 35
3.2.4.19 stopTones . 35

III

3.3 The Mozart Dicing Game . 35
3.3.1 A Description of the Game . 35
3.3.2 Implementation in SetlX . 36

Bibliography 40

IV

List of Figures

2.1 Octaves . 7

3.1 The Coarse Architecture of the Plugin . 17
3.2 The Connection between the Interpreter and the Soundplugin 19
3.3 Extraction from Mozarts' �Ein musikalisches Würfelspiel� (A musical Dicing

game) . 36
3.4 Extraction from the Map Table . 37
3.5 �V0 F6i D6i G6i V1 F4i D4i G4i V2 Rq.� 38

V

1 Introduction

The idea of using algorithms to compose and build music started long before it got
more interesting by our modern high performance computers. We will list some
milestones of this field of research:

The greek philosophers (Pythagoras, Ptolemy) around 100 AD believed, that
there is an absolute relation between single tones. According to them, the har-
mony of music can be explained with pure mathematics. (Which was right!) So,
they started to derive formulas, that were the foundation of our understanding of
music with modes, scales and intervals.

Soon after Mozarts’ early death, ”Ein Musikalisches Würfelspiel” was published
posthumously. It contains a list of fragments for a twelve-measure waltz, which can
be arranged using a dice. Such games were pretty popular during that time and
we will implement his algorithm at the end of this work.

John Cage was best known for his experiments with randomness in music. For
example, his Atlas Ecliptica (1961) was composed by laying a score paper on top
of astronomical charts and simply placing notes where the stars occured. This is
called a stochastic approach. (see [5])

On the other side, there are rule-based schemes, that try to extract formulas out
of existing music sheet. Based on these sources, it is possible to create new mu-
sic. For example Kemal Ebcioglu wrote a system called CHORAL, which generates
four-part chorales1 in the style of J. S. Bachs’ music according to 250 first-order
predicates. (See [3])

The newest development is the usage of Artificial Intelligence (AI) for compos-
ing music. For example the startup AIVA Technolgies concentrates on generating
soundtracks for movies and video games using AI. In 2017 they supplied the whole
soundtrack for the game Battle Royal by Pixelfield. (see. [7])

1a choral

1

Development of a Sound Plugin for SetlX

1.1 Scope of the Document

The scope of this document is to illustrate the work of the student Lukas Retschmeier
during his student research project at the Cooperative State University Baden Wuert-
temberg in Mannheim. It shows the development process of a soundplugin for the
SETLX language and describes how it can be used. Furthermore, this document
shows how the Mozart Dicing Game algorithm was implemented in SETLX using
this new plugin.

1.2 Purpose of the Document

The purpose of this document is to explain the soundplugin for SETLX and sup-
port the development of further add ons to the SETLX Interpreter. Furthermore, it
serves as a documentation for the new features and functions that were added to
the programming language and how they can be used.

1.3 Prerequisites

In order to understand the musical background, it can help to have at least a little
knowledge about music theory. If you want to refresh your skills in reading music
sheet, you can find a summary of the most important things here.

Furthermore, for a deeper dive-in into the advanced topic of harmonies I can
recommend the German book ”Harmonielehre im Selbststudium” (Harmonies in
Selfstudy) by Thomas Krämer to anyone.

2 Lukas Retschmeier

2 Theory

In this chapter, we will give more information about two theoretical topics:

1. The free JFugue Java Framework

2. The usage of a MusicString that can be parsed by JFugue and is used to write
music

2.1 What is SetlX ?

According to the official webpage ”setlx is an interpreter for the high level pro-
gramming language SETLX (set language eXtendend)”. [6] As you might already
guess from this name, the language focuses on a clever and sophisticated support
for lists and sets. SETLX is an extension for the programming language setl by
Jack Schwartz designed by Hermann Tom.

Prof. Dr. Karl Stroetmann, a professor at the DHBW Mannheim and advisor for this
research project also uses it in his lectures about mathematics and logics, because
it is a good and easy way to demonstrate the concepts of discrete mathematics.

The latest SETLX version is 2.7.0, which was released in October 2017, can be
downloaded here.1 It depends on the Java Runtime Environment (JRE) 1.7.

2.2 MIDI File Format

”MIDI (Musical Instrument Digital Interface) is a protocol developed in the 1980’
which allows electronic instruments and other digital musical tools to communi-
cate with each other.”[1]

1https://randoom.org/Software/SetlX

3

https://randoom.org/Software/SetlX
https://randoom.org/Software/SetlX

Development of a Sound Plugin for SetlX

A MIDI file itself does not produce any sound. It just gives instructions to an
interpreter on how to produce tones with a series of messages. Consequently, the
real sounding can vary from device to device. You can find a full specification of
the MIDI file format here.

2.3 The JFugue 5.0 Java Framework

JFugue is an open-source Java framework, that allows an easy way to program and
play music in Java. It was first released in 2002 by David Koelle.(see. [4])

It extends the basic java midi classes Java.sound.midi and provides an easy-to-use
interface for a high-level access, that brings "music programming to the masses".[4,
p. 13] So, you do not have to care about the bits and bytes in the background, but
can concentrate on the thing, that matters most: the music itself.

In 2015 he published a completely rewritten version simply called JFugue 5.0,
which is a from-scratch revision of the whole code base in order to get a cleaner
software architecture of the framework.

2.3.1 Functionalities

JFugue provides a ton of functionalities for interacting with music in Java. These
include:

1. Writing and playing music using special JFugue MusicStrings

2. Usage of functions based on music theory

3. Real-Time processing of music

4. Loading and saving of MIDI-files

2.3.2 Advantages over JMusic

There is another famous Java framework for music called JMusic. JMusic provides
similar to JFugue methods for writing and playing music.

In an early prototype, many parts of this work had been first implemented in
JMusic. But there were some problems, that lead the author switching to JFugue.

4 Lukas Retschmeier

https://www.midi.org/specifications

Development of a Sound Plugin for SetlX

JMusic stopped maintanance and further development The last (major) release
of JMusic was in 2009.(see. [2]). This was 10 years ago and since then no bugs have
been fixed any more. Officially just Java versions up to 1.6 are supported and we
can not hope for an optimization for newer runtime environments.

Simplicity of JFugue MusicString A JFugue MusicString is a simple character se-
quence, that can be parsed by a JFugue Staccato Parser. It provides a natural way
to prompt music information. This can contain voices, tones as well as velocities
and volumes. In other words, it contains everything you can find in a typical mu-
sic sheet or midi file. It can be compared to well-known markup languages like
Markdown or Lilypond2. We do not have the ability to write music in that natural
and simple way as JFugue provides us in JMusic. In section 2.4 we will dive deeper
into the possibilities of a MusicString.

These two points were the reason, why the decision was finally made in favor of
JFugue.

2.3.3 A Simple JFugue Example

1 import org.jfugue.player.Player;

2
3 public class HelloWorld2 {

4 public static void main(String[] args) {

5 Player player = new Player();

6 player.play("V0 I[Piano] Eq Ch. | Eq Ch. | Dq Eq Dq Cq V1 I[Flute]

Rw | Rw | GmajQQQ CmajQ");

7 }

8 }

Code 2.1: A Simple JFugue Example

Figure 2.1 shows an example for the JFugue Framework in Java playing a simple
sequence of tones. First, a player object is created, that can play a MusicString and

2A special MD language for creation of sheet of music, free project

5 Lukas Retschmeier

Development of a Sound Plugin for SetlX

then we simply call the play()-method with some notes to play.

2.4 Using JFugue MusicString

This section will explain all you need to know about creating music in SETLX .
Because the SETLX -soundplugin will directly implement JFugue, it is important
to know, how you can write down music in a single string. This section will just
cover the basics on what can be done with it. For more information please have a
look into the official manual3.

The following shows how a note is specified in JFugue. If you want to play a rest,
you can use the rest character ’R’.

1 regex := ['C','D','E','F','G','A','B','R']['#','b']?

2 [octave]?[duration]*[dotted]?[chord]?

3 octave := {0,1,..,10}

4 duration := {'w','h','q','i','s','t','x','o'}

5 dotted := {'.'}

6 chord := {maj, min, aug, dim, ...}

7 // For a complete list see Chords section

Examples For example ”C”,”Eb4q” or ”Ab6w.maj” are valid Notes/chords.

2.4.1 Octaves

You may optionally specify an octave for the note represented by a number ranging
from 0 to 10. Figure 2.1 shows the main octaves.

2.4.2 Duration

The duration indicates how long a note should be played. Duration is indicated by
one of the letters in the table below. If duration is not specified, a quarter serves as
default value.

3Chapter Two

6 Lukas Retschmeier

http://www.jfugue.org/4/jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf

Development of a Sound Plugin for SetlX

Figure 2.1: JFugue Octave Values

Duration Character
whole w
half h
quarter q
eighth i
sixteenth s
thirty-second t
sixty-fourth x
one-twenty-eighth o

A dot increases the duration of a note by half of its value. So, for example a
dotted half note (Rh.) is equal to the duration of a half note plus a quarter note.

Examples Here are some examples of durations:

1 "Aw" // A5 whole note

2 "Aw." //A5 whole+half note

3 "E7h" //E7 half note

4 "[60]wq // C (Numerical 60 whole+quarter)

5 "G8i" // G8 dotted-eighth note

2.4.3 Chords

JFugue supports a variety of chords, each of which is described in the table 2.1 on
page 10. If you add this chord postfix to a note, JFugue will generate the chord
based on the note as root.

7 Lukas Retschmeier

Development of a Sound Plugin for SetlX

2.4.4 MusicString

If you want to create music and not just single notes, you have the know about
MusicStrings. Simply, a MusicString is a pattern in form of a string that contains a
sequence of notes/rests and additional behaviors.

They can also be combined which is useful, when you want to reuse and struc-
ture parts of your music - for example splitting up the music into Intro, Verse and
Bridges and repeat these parts.

In a MusicString you just write the notes one after another. This can look like one
of the following examples, which are all valid MusicStrings:

"C D E F G A B C6" // 'B' == German 'H'

"Cmaj Fmaj Gmaj Cmaj"

"Cq Dw Ew. Gh."

2.4.4.1 Additional Information

You can add additional information to the MusicString. Therefore, the letters T, I
and V were added in order to parse the Tempo, Instrument and Voice. These settings
are valid until they are explicit changed again.

Tempo The tempo in BPM (Beats per Minute) or tempo markings (Largo, An-
dante, Allegro, Presto, ...)

"T[Andante] Cq Eq T[120] Cq Eq T[Presto] Cq Eq"

// Increasing tempo using three different tempi

Instrument The instrument that is used by the MIDI player. You can find a list of
all supported instruments in the manual (see Figure 2.13).

"I[Piano] Cq Gq I[Violin] Cq Gq"

// plays a quint and changes instrument from piano to violin

Voice The line in which the notes are played. If you want to play more than one
note at the same time (polyphony), you have to use voices.

8 Lukas Retschmeier

http://www.jfugue.org/4/jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf

Development of a Sound Plugin for SetlX

"V1 C6h V2 E6q G6q"

// plays E and G at the same time as C

Of course, you can use these information together! Therefore, an instrument sub-
ordinates to the voice, which subordinates to the tempo. This means that for exam-
ple an instrument information always refers to the last voice indication:

Tempo >> Voice >> Instrument

"T120 V1 I[Piano] C6h V2 I[Violin] E6q G6q"

// plays E and G (Violin) at the same time as C (Piano)

2.4.4.2 Examples For MusicString

Here are some examples of complete MusicStrings:

"C5q C5q G5q G5q A5q A5q Gh"

// Twinkle, twinkle, little star

"[V1] D6qmaj7 G6qmaj7 C6hmaj7"

//Simple Jazz II-V-I progression on Voice 1

Inversions You can change the root note of a chord by shifting up by one octave.
Then the second note will become the bass note. This process is called inverting.
Especially in Jazz we also speak from the voicing of the chord.

You can invert a chord by adding a ’^’ to the end of the chord string. (’^^’ for
second inversion). For example C6maj^ will be equivalent to E6+G6+C7 (instead
of C6+E6+G6)

2.4.5 Progressions

A chord progression is a succession of musical chords. The complexity of a chord
progression varies from genre to genre and over different historical periods. Pop
and Rock songs have in general easier progressions than Jazz, Blues or Funk music.

9 Lukas Retschmeier

Development of a Sound Plugin for SetlX

Common Name JFugue Name Intervals (0 = root)
major maj 0, 4, 7
minor min 0, 3, 7
augmented aug 0, 4, 8
diminished dim 0, 3, 6
7th (dominant) dom7 0, 4, 7, 10
major 7th maj7 0, 4, 7, 11
minor 7th min7 0, 3, 7, 10
suspended 4th sus4 0, 5, 7
suspended 2nd sus2 0, 2, 7
6th (major) maj6 0, 4, 7, 9
minor 6th min6 0, 3, 7, 9
9th (dominant) dom9 0, 4, 7, 10, 14
major 9th maj9 0, 4, 7, 11, 14
minor 9th min9 0, 3, 7, 10, 14
diminished 7th dim7 0, 3, 6, 9
add9 add9 0, 4, 7, 14
minor 11th min11 0, 7, 10, 14, 15, 17
11th (dominant) dom11 0, 7, 10, 14, 17
13th (dominant) dom13 0, 7, 10, 14, 16, 21
minor 13th min13 0, 7, 10, 14, 15, 21
major 13th maj13 0, 7, 11, 14, 16, 21
7-5 (dominant) dom7<5 0, 4, 6, 10
7+5 (dominant) dom7>5 0, 4, 8, 10
major 7-5 maj7<5 0, 4, 6, 11
major 7+5 maj7>5 0, 4, 8, 11
minor major 7 minmaj7 0, 3, 7, 11
7-5-9 (dominant) dom7<5<9 0, 4, 6, 10, 13
7-5+9 (dominant) dom7<5>9 0, 4, 6, 10, 15
7+5-9 (dominant) dom7>5<9 0, 4, 8, 10, 13
7+5+9 (dominant) dom7>5>9 0, 4, 8, 10, 15

Table 2.1: Chord You Can Use

10 Lukas Retschmeier

Development of a Sound Plugin for SetlX

Notation There are two ways to notate a progression. In modern music sheets
you mostly find the ABC-notation, where you write the exact chords including
the tone letter and further tones or inversions with additional parameters. (e.g.
"CMaj7/E" for an C major chord with an additional sept on base tone E). The prob-
lem of this notation is, that it is bound to a scale and not to the general cases. Re-
member: If you keep the relative distances, you can start on every key. Converting
music from one scale into another is called transposing.

In order to serve the general case, that is not bound to a tonality, we can use a
representation using roman letters from I to VII, that describe the relative relation
between the different chords. Of course, if you want to play the progression, you
have to set a base key (=I).

A JFugue MusicString can parse such progressions, with a class called ChordPro-
gression, that accepts a progression and can convert it to the chords based on a base
key (scale).

2.4.5.1 Example: Pop Progression

One of the most important progressions is the pop Progression. This progression is
defined by the following sequence.

I− V− vi− IV

In the scale of C Major the chords would be C-G-Am-F.
The effect of this simple four chords is astonishing. An australian comedy group

called ’Axis Of Awesome’ has arranged a medley of short snippets of 50 famous
pop songs just using these four chords. You can listen to it here.

Writing this in JFugue using a MusicString is pretty the same. We will use the
function addChordProgression() we will later implement in SETLX .

addChordProgression("chords", "I V vi IV");

play("chords");

11 Lukas Retschmeier

https://www.youtube.com/watch?v=5pidokakU4I

Development of a Sound Plugin for SetlX

2.4.6 Triplets

You can also use tuplets in your music. Tuplets are groups of notes in which the
duration of the notes is adjusted such that the duration of the group of notes is
consistent with the duration of the next larger note duration.

You can write that in JFugue like the following:

addPattern("1:2", "Eq*3:2 Fq*3:2 Gq*3:2");

play("1:2");

You can also modify the attac and decay values:

addPattern("ad", "C5qa0d127");

// Sharp attack (a0), long decay (d127)

play("ad");

For more detailed information about them please have look into chapter two the
manual.

12 Lukas Retschmeier

http://www.jfugue.org/4/jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf

3 Method

Now, we want to show how the soundplugin that connects JFugue with SETLX was
developed. Therefore new User Defined Functions and a JFugue backend were added
to the SETLX core and can now be called by the interpreter.

3.1 Development Environment

For the development of the soundplugin IDEAs Java Development Environment
Platform IntelliJ was used, but of course you can also develop or compile it using
your preferred IDE or text editor (vim of course!).

In order to build the interpreter you need the following tools:

• Java JDK 8+

• Maven 3+

These are the versions that were used in the soundplugin development. So, older
Maven versions might probabily not work correctly. JFugue requires at least Java 8,
so we need to compile SETLX with Java 8, too.

3.1.1 Setting up Directories for the Sound Plugin

We add two folder structures to the existing directories:

• example_setlX_sound_code contains some example code and the Mozart Dice
Algorithm

• sound_addon the source and test code for the plugin itself.

13

Development of a Sound Plugin for SetlX

These folders are marked in blue in the following complete directory tree:

/

Tutorial

Documentation

example_SetlX_code

example_SetlX_sound_code

documentation

example_code

example_SetlX_stat_code

grammar_pure

interpreter

sound_addon

lib

jfugue

src

main

(...)

test

(...)

syntax_highlighting

3.1.2 Add Sound-Plugin as Maven Subproject

A maven project can contain sub projects and we will add the sound plugin as a
separate project to the Maven main pom.xml.

So, we just have to add one line to include a new sub project sound_addon.

1 [...]

2 <modules>

3 <module>core</module>

4 <module>pc_ui</module>

5 <module>sound_addon</module> <!-- Including the sound plugin-->

6 <module>gfx_addon</module>

7 <module>plot_addon</module>

8 <module>stat_addon</module>

9 <module>tools</module>

10 </modules>

14 Lukas Retschmeier

Development of a Sound Plugin for SetlX

11 [...]

Next, we create another pom.xml in the sound_plugin directory, that contains
build information for this subproject.

3.1.3 Modi�ying the Compilation Scripts

There is a script called createDistributions.sh located in the top directory, which in-
vokes maven and compiles the whole SETLX language and documentations. We
have to modify a few lines in order to include the new sound plugin. This is also
important for every new add on that is being implemented for in the future.

1 # [...] l. 30

2 if [[−f "$OVERRIDE_setlXJarDirectory/setlX.jar" &&

3 "$OVERRIDE_setlXJarDirectory/setlX−gfx.jar" &&

4 "$OVERRIDE_setlXJarDirectory/setlX−plot.jar" &&

5 "$OVERRIDE_setlXJarDirectory/setlX−stat.jar" &&

6 "$OVERRIDE_setlXJarDirectory/setlX−sound.jar"]];

7 then

8

9 # [...] l. 156

10

11 cp changelog.txt license.txt manual.pdf tutorial.pdf

12 $OVERRIDE_setlXJarDirectory/setlX

13 $OVERRIDE_setlXJarDirectory/setlX.cmd

14 $OVERRIDE_setlXJarDirectory/setlX.jar

15 $OVERRIDE_setlXJarDirectory/setlX−gfx.jar
16 $OVERRIDE_setlXJarDirectory/setlX−plot.jar
17 $OVERRIDE_setlXJarDirectory/setlX−stat.jar
18 $OVERRIDE_setlXJarDirectory/setlX−sound.jar zipContents/

After these two lines (30 and 156) are modified, it should be possible to compile
SETLX and the new sound plugin by executing the script with

1 $./createDistributions.sh

which simple does some tests and then invokes the maven build process. If you
add a –notests as parameter, you can compile without all of the time consuming
tests.

15 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3.2 Integration of JFugue into SetlX

SETLX uses Apache Maven to manage the external binaries and libraries. In order to
include the JFugue 5.0 Framework into SETLX , we have to add it as a dependency
to maven and it will be automatically added to the accessible libraries.

3.2.1 JFugue 5.0 and maven

Maven Central is the official default maven repository, where maven automatically
pulls external binaries. The problem is that the new version 5.0 of JFugue is not
available in Maven Central yet (in March 2018). Maybe it will be added in the future,
but at the moment, we need a workaround.

A solution for that is to use a local repository and place the JFugue *.jar there.
Then maven can resolve the path to a local file and imports the JFugue 5.0 depen-
dency.

This is how it looks in maven pom.xml file for the soundplugin subproject:

1 <repositories>

2 <repository>

3 <id>lcl</id>

4 <url>file://${basedir}/lib</url>

5 </repository>

6 </repositories>

7

8 <dependencies>

9 [...]

10 <dependency>

11 <groupId>jfugue</groupId>

12 <artifactId>jfugue</artifactId>

13 <version>5.0.9</version>

14 </dependency>

15 </dependencies>

You can see, that in line 4 a local file path is added to the maven repositories and
is marked as local (line 3: ’lcl’).

16 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3.2.2 Architecture

In this section, we want to analyze the general architecture of the plugin.

3.2.2.1 Packages

Excluding the unit tests, there are five main packages integrating the major func-
tionalities of JFugue into SETLX . We will give a short description about what their
purposes are.

Figure 3.1: The Coarse Architecture of the Plugin

PD_Functions In order to make the new music operations accessible, we have to
declare some new functions to the interpreter. They are called PreDefinedProcedures
and will be discussed in 3.2.4.

Music Player This package contains all classes that are necessary to play the pat-
terns of music that are stored in SETLX during runtime.

Real Time System This package adds programming methodologies for process-
ing (and playing) music in real time without any intermediate steps of creating
objects for just a simple playback. Basically it provides the backend for a playTone

17 Lukas Retschmeier

Development of a Sound Plugin for SetlX

function, which you can be directly used from the SETLX interpreter to play a tone
without needing to store information about it. The tone will immediately be played
after the function is called.

Midi System This package manages everything that is related to midi file in- and
output. We can export the music written in SETLX into a valid midi file and play
it in other media players that support the midi-codec (like timidity, vlc, ...). On
the other side, you can also import a midi file, modify and play it in SETLX . For
instance, you can download some midi files of Bach music, load them into SETLX
and then play them.

Music System The music system can store and manage JFugue PatternProducer
objects. A PatternProducer is an JFugue interface implemented by classes that create
actual music content. In other words, it can save actual music information and
operate with them.

JUnit tests This package contains the unit tests for the plugin. The playback of
music is pretty difficult to test, so we just focus on the Music System component.

Furthermore, it is also difficult to test PreDefinedProcedures. The reason is that
they depend on the runtime of the interpreter.

3.2.2.2 Data Flow Graph

We have to connect our PreDefinedProcedures with our sound plugin backend.
Because every PreDefinedProcedure stands completely alone, we need a class that
manages the whole backend and gives the PreDefinedProcedure access to the sub-
systems it needs. Therefore we implement a global class that serves as the entry-
point providing getter methods returning references to the subsystems.

After the interpreter is started, this class automatically initializes all of the sound
plugin components.

Figure 3.2 shows how this process works. A user calls a PreDefinedProcedure

from the interpreter. This function has access to the main instance of the soundplu-
gin, which returns the required subsystem. After that, the PreDefinedProcedure

has access to the methods it needs.

18 Lukas Retschmeier

Development of a Sound Plugin for SetlX

An example data flow, which is also visualized in 3.2 might be:

1. The user calls playTone(40) from the interpreter

2. The interpreter connects to the soundplugins’ Main class

3. If the subsystems are not initialized yet, it will first create the objects of the
subsystems

4. The Main class returns the requested Real Time System to the interpreter

5. The interpreter can now call the play-method of the Real Time System

6. The interpreter returns the success of the operation to the user and is ready
for next function calls.

PD_addPattern

Calls Method

PD_Functions

[...]

playTone(args);

addPattern("C D");

Frontend BackendEntrypointInterpreter

[...]

Soundplugin

Real Time System

Music System

MIDI System

Music Player

PD_playTone(...)

Sound Plugin«singleton»
Main

«access»

«return»
Feedback

«return»
Returns Instance

«getter»
Get Real-

TimePlayer Inst

«...» «...»

«access»
calls function

«Initialization»
Init plugin

components

Figure 3.2: The Connection between the Interpreter and the Soundplugin

3.2.2.3 Storage for Music Information

Now we want to temporary store music information supplied by a user during
runtime. At the moment, JFugue has three different classes for music information:
A ChordProgression class containing a sequence of chords, a Rhythm class for playing
percussions in a simplified way and a Pattern class that can hold music songs. All
of these JFugue classes inherit from a super class PatternProducer.

19 Lukas Retschmeier

Development of a Sound Plugin for SetlX

So, if we want to store them, we can generate a generic class that takes objects
implementing the PatternProducer interface. The following codesnippet (3.1) shows
the main methods of this class. It simply provides an interface to a map of elements.

The implementation of this interface specification then just uses a HashMap from
the Java Collection API in order to save a key-value. A unique String that can later
be used to find music elements in the storage.

1 public interface iMusicStorage<T extends PatternProducer> {

2 void addElement(String name, T element)

3 throws NullArgumentsException;

4 boolean checkExisting(String name);

5 T getElement(String name)

6 throws PatternNotFoundException;

7 HashMap<String, T> getAllElements();

8 }

Code 3.1: Storage for Music Information

3.2.2.4 Main Class

As shown in 3.2 the main class provides an interface to all parts of the soundplugin.
Therefore it creates objects for all different systems at startup: The Real Time System,
Music Systen and the Music Player.

Because we only need one main class per runtime, we implement it using the
Singleton design pattern.

1 public class SoundPlugin implements iSoundPlugin {

2 private static SoundPlugin setlxSoundPlugin;

3 private iMusicPlayer musicPlayer;

4 private iMusicManager musicManager;

5 private iRealTimePlayer realTimePlayer;

6 private iAtomFactory atomFactory;

7 // ...

8 private SoundPlugin() throws MidiNotAvailableException {

9 initializeComponents();

10 }

20 Lukas Retschmeier

Development of a Sound Plugin for SetlX

11 private void initializeComponents() throws

MidiNotAvailableException {

12 atomFactory = new AtomFactory()

13 // ...

14 musicManager = new MusicManager();

15 musicPlayer = new MusicPlayer(musicManager);

16 realTimePlayer = new RealTimerPlayer(noteFactory,

atomFactory);

17 }

18 @Override

19 public iMusicManager getMusicManager() {

20 return musicManager;

21 }

22 // More getter methods here...

We will shortly discuss this code:

1. In line 1, we implement the interface iSoundPlugin. Every class in the project
does implement an interface that specifies the method signatures of the im-
plementing class.

2. In line 2, we define a static variable that holds the reference to the SoundPlugin
singleton object.

3. The constructor is set to private in line 9, so that is impossible to create new
objects from outside that class.

4. The initializeComponents() method from line 12 to 18 creates the subsystem
objects and is called by the constructor.

5. All others methods of this class just returns the reference to the subsystem
objects. (Line 19)

The following static getInstance() method finishes the implementation of the Sin-
gleton pattern. It is globally accessible and takes care that only one object can be
created at the same time. An advantage is that the soundplugin objects are only

21 Lukas Retschmeier

Development of a Sound Plugin for SetlX

created, when they are really needed. As long as no soundplugin specific function
is called by the interpreter, we do not have to create the sound plugin objects.

1 public static SoundPlugin getInstance() {

2 if (setlxSoundPlugin == null) {

3 try {

4 setlxSoundPlugin = new SoundPlugin();

5 } catch (MidiNotAvailableException e) {

6 e.printStackTrace();

7 }

8 }

9 return setlxSoundPlugin;

10 }

11 }

3.2.2.5 User De�ned Functions

You can add own PreDefinedProcedures to SETLX . The main idea behind is that
every function to be added get its own java class inheriting from PreDefinedProcedure

insides a functions folder. This class has to follow certain conventions in order to be
recognized as a function:

1. Located in functions folder

2. ”PD_” prefix in file- and classname

3. Inheritance from PreDefinedProcedure

The following code snippets shows the class PD_addChordProgression that adds a
new ChordProgression to a runtime storage.

1 package org.randoom.setlx.functions;

2 import org.jfugue.theory.ChordProgression;

3 // ...

4 public class PD_addChordProgression extends PreDefinedProcedure {

22 Lukas Retschmeier

Development of a Sound Plugin for SetlX

Because we also want to pass parameters to the function, they are defined by a
global createParameter-method and then stored to a variable. We later bind this
parameter to an object in the constructor.

1 private final static ParameterDefinition PATTERN_NAME =

createParameter("patternName");

2 private final static ParameterDefinition CHORD_PROGRESSION =

createParameter("chordProgression");

3 private final static ParameterDefinition KEY =

createOptionalParameter("key", SetlString.

newSetlStringFromSB(new StringBuilder("C")));

4 // With default value

In order to later access our function, we need to call a default constructor for our
PreDefinedProcedure.

1 public final static PreDefinedProcedure DEFINITION = new

PD_addChordProgression();

Because our plugin has a main class that can be used to access all components
of the Soundplugin, we can get a reference to that object by a getInstance()-method.
This follows the conventions of the Singleton-pattern

1 SoundPlugin root = SoundPlugin.getInstance();

Of course, we also have to declare the default constructor, where we add the
parameters that were defined globally to the ChordProgression object.

1 protected PD_addChordProgression() {

2 super();

3 addParameter(PATTERN_NAME);

4 addParameter(CHORD_PROGRESSION);

5 addParameter(KEY);

6 }

The magic happens in the inherited method execute, which is being executed
every time the method is called. The parameters are passed by a HashMap, which
holds all of the values passed by the caller.

23 Lukas Retschmeier

Development of a Sound Plugin for SetlX

1 @Override

2 protected Value execute(final State state, final HashMap<

ParameterDefinition, Value> args) throws SetlException {

3 final Value patternName = args.get(PATTERN_NAME);

4 final Value chordProgression = args.get(

CHORD_PROGRESSION);

5 final Value key = args.get(KEY);

Now we can use these values to call the backend as shown in 3.2. In this case, we
use a ChordProgressionFactory to generate a new ChordProgression object and
then add it to the MusicManager. At the end, we simply return that the operation
was successful. Of course, we could also return a real value that was calculated by
the execute method. A use case for that would be implementing new mathematical
functions.

1 ChordProgression cp = root.getChordProgressionFactory()

2 .createChordProgression(

3 chordProgression.getUnquotedString(state), key.

getUnquotedString(state));

4 root.getMusicManager().add(patternName.getUnquotedString(state)

, cp);

5 return SetlBoolean.TRUE;

6 }

7 }

3.2.3 Exception Handling

Runtime errors can be caught by SETLX and displayed without leaving the inter-
preter environment. Therefore, a new defined exception must inherit from the class
CatchableInSetlXException.

Example The following example shows the implementation of an exception that
is thrown, when a given key is already in use. This can for example happen, when
you try to add two patterns with the same name.

24 Lukas Retschmeier

Development of a Sound Plugin for SetlX

1 package org.randoom.setlx.setlXMusic.musicSystem.exceptions;

2 import org.randoom.setlx.exceptions.CatchableInSetlXException;

3 public class KeyAlreadyInUseException extends

CatchableInSetlXException {

4 public KeyAlreadyInUseException() {

5 super("The key/name you want to use is already in use!")

;

6 }

7 }

3.2.4 Application Programming Interface (API)

The following pages list all of the new functions of the soundplugin that can di-
rectly be called by the interpreter and give some examples on how to use them.

A question mark in the parameter list means that it is optional and predefined if
you do not pass it.

3.2.4.1 addChordProgression

addChordProgression(patternName: string, chordProgression: string,

key?: string = "C")

Parameter Description
patterName A unique identifier for this ChordProgression
chordProgression A string containing a ChordProgression
key The base key (=Tonic) of the ChordProgression

Creates a new chord progression from a given progression string chordProgression
and adds it to the the current SETLX runtime environment. A ChordProgression is
a sequence of roman numbers. For minor chords use lower capitals. You can find
more information about ChordProgression strings in 2.4.5. The patternName is the
identifier for the pattern that is used, whenever you refer to this pattern.

The key identifies the tonic chord. Because a progression just shows the relative
distances of the chords, you need to specify a base key that is used for the tonic

25 Lukas Retschmeier

Development of a Sound Plugin for SetlX

chord. For example the progression I-IV-V-I would play the chords ”Cmaj Fmaj
Gmaj Cmaj” on ’C’ as base key or ”Fmaj Bbmaj Cmaj Fmaj” on ’F’.

You can also modify a chord progression using the functions allChordsAs and
eachChordAs.

1 $ addChordProgression("prog1", "I IV V I");

2 // Simply adds I IV V I progression

3 $ addChordProgression("prog2", "I IV V I", "F");

4 // Same progression as ex1, but on F-Key

5 & addChordProgression("prog3", "I V vi iii IV I IV V")

6 // The famous Canon progression by Pachelbel using minor chords

7 $ play("prog1");

8 // In order to actually play the progression

3.2.4.2 addPattern

addPattern(patternName: string, pattern: string, voice?: int = 0,

tempo?: int = 0, instrument?: int = 0)

This is the most general and recommended way to add music. The function takes
a pattern name and the pattern itself and saves it to the current SETLX -runtime.

It is not recommend to use the voice, tempo and instrument parameters, because
it can have negative side effects, when the pattern also contains changes in them.
It is better to use the additional information in the MusicString like described in
2.4.4.1

1 addPattern("pat1","C D E F G A B");

2 // C-major scale

3 addPattern("pat2", "V1 C D E F V2 E F G B");

4 // thirds played simultanous

5 addPattern("pat3", "T60 V0 F6i D6i G6i V1 F4i D4i G4i V2 Rq.");

6 //A more complex pattern

7 addPattern("pat4","V0 I[Piano] Eq Ch. | Eq Ch. | Dq Eq Dq Cq V1 I[Flute] Rw | Rw

| GmajQQQ CmajQ");

8 // ~~~ " ~~~

9 addPattern("pat5","C D E F", 1, 120, 5)

10 // Using more parameters. A mapping table for num <-> instruments can be

found in the manual

26 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3.2.4.3 addPatternsToPattern

addPatternsToPattern(patternFrom: string, patternTo: string)

Parameter Description
patternFrom A list of pattern names that will be added to the des-

tination
patternTo The destination pattern in which to insert

If you want to add a pattern at the end of another, you can use this function.
patternFrom is a list with the names of the patterns you want to copy into the

end of patternTo. If you specify more than one pattern in patternFrom, it will add
the patterns in the same order as in the string.

1 addPattern("A","C D E F");

2 addPattern("B","G H B C6");

3
4 addPatternsToPattern("B","A");

5 // Adds pattern "B" to "A"

6 addPatternsToPattern("B B","A");

7 // Adds "B" twice to "A"

8 showMusic();

3.2.4.4 addRhythm

addRhythm(rhythmName: string, pattern: string)

Parameter Description
rhythmName The name of the rhythm element
pattern A RhythmString

RhythmicProgressions can be used to add percussion to the music.

1 addRhythm("rhy1","xxxxxxxx");

2 addRhythm("rhy2","x.x.x.x.x.");

3
4 play("rhy1");

27 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3.2.4.5 addToPattern

addToPattern(name: string, pattern: string)

Parameter Description
name The name of the existin pattern
pattern A MusicString that contains the musical information

Adds a new pattern at the end of an existing pattern. Therefore you can specify
a MusicString, which will directly be added at the end of the existing pattern.

1 addPattern("add1","C D E F");

2 addToPattern("add1","V1 G V2 Rw C");

3 // Adds the MusicString "V1 G [...]" to pattern "add1"

4 showMusic(); // To see the effect

3.2.4.6 allChordsAs

allChordsAs(chordPatternName: string, modifyString: string)

Parameter Description
chordPatternName The name of the ChordProgression
modifyString A string that defines the modification

Can be used to specify the duration of the chords of a ChordProgression. By default,
every Chord has the duration of a whole note.

You refer to the chords with the separator char ’#’ followed by the number of the
chord. ”#1w” will be interpreted as: ”The first Chord has a duration of a whole
note”.

1 addChordProgression("mdC1","I IV V I");

2 allChordsAs("mdC1","#1w #2h #3q #4a");

3 // First Chord: whole note, Second: half, ...

4 showMusic();

3.2.4.7 duplicatePattern

duplicatePattern(patternSourceName: string, patternNewName: string)

28 Lukas Retschmeier

Development of a Sound Plugin for SetlX

Parameter Description
patternSourceName The name of the pattern to be copied
patternNewName The name of the new pattern

Creates a deep copy of a pattern. Technically, this means that the MusicString that
defines an existing pattern is hard-copied into a new one.

1 addPattern("A","C D E F G A B C");

2 duplicatePattern("A","A_copy");

3 // Copies the pattern "A" into a new one called "A_copy"

4 showMusic(); // To see the effect

3.2.4.8 eachChordAs

eachChordAs(patternName: string, modifyString: string)

Parameter Description
patternName The name of the ChordProgression you want to modify
modifyString A string that defines the modification

Requires passing a string that has ’#’ followed by an index, in which case each
hashsign+index will be replaced by the indexed note of the chord for each chord in
the progression. Using the underscore character instead of an index will result in
the chord itself added to the string.

1 addChordProgression("alb","I IV V I");

2
3 eachChordAs("alb","#1e #3e #2e #3e #1e #3e #2e #3e");

4 // The famous Alberti bass

3.2.4.9 getPatternStats

getPatternStats(patternName: string)

Parameter Description
patternName The name of the pattern you want to see statistics

Prints some interesting statistics about an existing pattern. They contain infor-
mation about the number of notes, rests and measures.

It will also print calculated N, Average, SD and Range values of harmonics, rests,
pitches, duration and intervals, which can be useful for music analysis.

29 Lukas Retschmeier

Development of a Sound Plugin for SetlX

1 addPattern("stt","Cq Eh Gq Rq");

2 getPatternStats("stt");

3.2.4.10 loadMidi

loadMidi(fileName: string, patternName: string)

Parameter Description
fileName The name of the MIDI file to be parsed. Can also con-

tain paths, if the file is located in another directory.
patterName A name for the new pattern with the parsed MIDI

information

You can load existing MIDI files into SETLX . It will create a new pattern and fill it
with the MIDI-information parsed from an external MIDI file.
You can find some demo midi files here.

1 loadMidi("../someBach.mid", "I<3Bach");

2 showMusic("I<3Bach");

3.2.4.11 modifyPatternProperty

modifyPatternProperty(patternName: string, property: string,

value: double)

Parameter Description
patterName The name of the MIDI file to be parsed. Can also con-

tain paths, if the file is located in another directory.
property A name for the new pattern with the parsed MIDI

information
value A real value for the property.

Modifies one of the following properties of a whole pattern: voice, tempo, in-
strument. This function has the same effect as setting the properties directly in
addPattern(3.2.4.2).

Just use this function when you really need it! Setting one of these parameters
can have interferences with music information given in the string itself. For exam-
ple playing the pattern can have side effects, you properly do not see at the first
glimpse.

30 Lukas Retschmeier

http://www.jsbach.net/midi/midi_organ.html

Development of a Sound Plugin for SetlX

1 addPattern("mod1","C D E F G A B C");

2 modifyPatternProperty("mod1","voice",1)

3 // Sets VOICE to 1

4 modifyPatternProperty("mod1","TEMPO",120)

5 // Sets tempo to 120 BPM

6 modifyPatternProperty("mod1","instrument",1)

7 // Sets instrument to piano

For more information about instrument values again please have a look into the JFugue
manual.

3.2.4.12 play

play(patternNames: string)

Parameter Description
patternNames The names of the pattern to be played in a single

string.
More patterns are separated by a blank like ”pattern1
pattern2”

Maybe, this is the most essential function directly after addPattern(), because it
allows to actually play existing patterns. All you have to do is passing the name
of the Pattern, ChordProgression or RhythmProgression that you had added to the
runtime storage.

1 addPattern("ply1", "V1 C D E F G A B C6"); // C-maj scale

2 addPattern("ply2", "V2 E F G A B C6 D6 E6");

3 // Another voice in a seperate pattern

4 play("ply1");

5 // Plays one pattern

6 play("ply1 ply");

7 // plays pattern ply1 two times, because it just uses one Voice (1)

8 play("ply1 ply2");

9 // plays pattern "ply1" and "ply2" simultaniously, because they use

different voices (1 & 2)

3.2.4.13 playTone

playTone(note?: double = 0, duration?: double = 0, instrument?:

31 Lukas Retschmeier

Development of a Sound Plugin for SetlX

double = 0, voice?: double = 1, layer?: double = 1)

Parameter Description
note An integer representation of the note to be played.

You can find some important mapping values in the
table below.

duration The tempo of the tone BPM
instrument An instrument for this single tone
voice A voice of this single tone. If you want to play multi-

ple tones at the same time, you have to use this argu-
ment.

layer The layer of the tone

This function adds real time audio processing to SETLX . It can be used to gen-
erate tones and directly play them using audio interfaces. Of course, you can com-
bine the parameters with variable values.

If you want to wait for the music to be finished, you can use the sleep() function
and wait for the end of the playback.

You can calculate the duration of multiple tones using the following formula

∑
note∈QueuedNotes

60/BPM(note)

where BPM : note→ Int function that returns the speed of a given note.
If all notes have the same tempo BPM you can use the following formula:

n · 60/BPM

Where n is #QueuedNotes.

1 print("Simple Demo for Real Time Music");

2 playTone(40); // A single tone

3
4 for(x in {40..50}){

5 playTone(x, 120); // Just a few notes; ~5 seconds: 120 BPM with 11 notes

6 }

7 for(x in {40..50}){

8 playTone(x, 120,x-39); // Using different instruments; ~5 Seconds

9 }

32 Lukas Retschmeier

Development of a Sound Plugin for SetlX

10 for(x in {30..90}){

11 playTone(x, 7*x); // Accelerando; ~13 Seconds, 61 tones on Average of

90*7/2=315 BPM

12 }

13 for(x in {40..55}){

14 playTone(x, 120,2,1); // Two Voices at the same time; 13 Seconds

15 playTone(x+3, 180,2,2); // Playing a minor third; Polyrhythmical

16 }

17 sleep(36000); // wait for playback to be finished for 36 seconds

3.2.4.14 removeMusic

removeMusic(patternName: string)

Parameter Description
patternName The name of the Pattern, ChordProgression or Rhythm-

Progression to be removed.

Removes a Pattern, ChordProgression or RhythmProgression from the runtime stor-
age.

1 addPattern("rem1","C D E F G A B C");

2 removeMusic("rem1"); // removes the pattern from runtime storage

3 showMusic(); // To see the effect

3.2.4.15 saveAsMidi

saveAsMidi(patternName: string, fileName: string)

Parameter Description
patternName The name of the Pattern, ChordProgression or Rhythm-

Progression to be removed.
fileName The name and path of the MIDI output file

If you want to share a pattern created with SETLX , you can create a MIDI output
file. MIDI is a standardized format allowing you to use your music everywhere.
Many digital instruments also support the MIDI-format and you can load your
music there.

33 Lukas Retschmeier

Development of a Sound Plugin for SetlX

1 addPattern("mid1","C D E F G A B C6");

2 saveAsMidi("mid1","output.mid");

3.2.4.16 saveAsPattern

saveAsPattern(elementName: string)

Parameter Description
elementName The name of the ChordProgression or RhythmProgres-

sion to be converted

Because ChordProgressions and RhythmProgressions are often difficult to handle
with, you can convert them into a valid pattern and add it into the pattern storage.
The reason, why this works is that ChordProgressions and RhythmProgressions are
just subsets of patterns, with some special functions.

It will automatically get the ending ’[oldName]_conv’.

1 addChordProgression("cpr1","I IV V I");

2 addRhythmProgression("rhy1" ,"xxxxxxxx");

3
4 saveAsPattern("cpr1");

5 saveAsPattern("rhy1");

6 showMusic(); // New name: "cpr1_conv" and "rhy1_conv"

3.2.4.17 setKeyForChordProgression

setKeyForChordProgression(elementName: string, key: string)

Parameter Description
elementName The name of the ChordProgression you want to change

the base key
key A character representing the tonic chord

You can change the base key that is equal to the tonic chord of a ChordProgression.
It has the same effect as setting the optional key parameter in addChordProgression.

1 addChordProgression("KFC1", "I IV V I","C");

2 play("KFC1"); // plays it in C-Major (Base Key 'C')

3 setKeyForChordProgression("KFC1","F");

4 play("KFC1", "F"); // plays it in F-Major (Base Key 'F')

34 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3.2.4.18 showMusic

showMusic()

Prints a list showing all Patterns, ChordProgressions and RhythmProgressions that are
currently stored in the SETLX interpreter.

1 addChordProgression("SMu1", "I IV V I","C");

2 addPattern("SMu2","C D E F G A B C6");

3 // Adds some music...

4 showMusic();

3.2.4.19 stopTones

stopTones()

This function immediately stops the playback of the real time player. It also re-
moves all queued notes.

1 for(i in {40..100}){

2 playTone(x);

3 } // Fills the queue with some tones ...

4
5 stopTones(); // ... aaand stop

3.3 The Mozart Dicing Game

As a simple demonstration of what the SETLX -soundplugin can do, we want to
implement a musical dicing game by one of the most famous composers of all
times: J. W. Mozart1.

3.3.1 A Description of the Game

Music dicing games were pretty popular during the Classical Period. Even Haydn
and other famous composers tried to construct such games. The principle is pretty
simple: A composer constructs a harmonic progression and than writes down dif-
ferent melodies/motives for every bar that are based upon this progression. As a

1Exact name: Johannes Chrysostomus Wolfgangus Theophilus Mozart

35 Lukas Retschmeier

Development of a Sound Plugin for SetlX

consequence, you have more choices for every bar fulfilling the same function in
the piece of music: The music always sounds good and coherent.

At the heart of the dice game is a large collection of musical fragments. Each
fragment is a single 3/8 measure, consisting of a treble voice and a bass voice.
Traditionally, these fragments are stored in a ”score”, or ”table of measures”, and
located via two tables of measure numbers, which act as lookups, indexing into
that collection. The ”player” then uses dices to randomly create his own personal
piece of music!

Figure 3.3 is an extraction showing fragments of Mozarts’ dicing game.

Figure 3.3: Extraction from Mozarts’ ”Ein musikalisches Würfelspiel” (A musical
Dicing game)

Figure 3.4 on page 37 shows, how the measures are linked to the sum of the two
dices on the nth roll. For instance, if you throw a 5 and a 6 in the first roll, it means
that you play fragment 3 (A simple tonic chord) in the first (A) measure. You can
see that fragment in figure 3.3.

3.3.2 Implementation in SetlX

Now we will give a possible implementation in SETLX using the new awesome
functionalities provided by the SETLX Soundplugin.

1 // ~~~ MOZART DICING GAME ~~~

2 addPattern("1","V0 F6i D6i G6i V1 F4i D4i G4i V2 Rq.");

36 Lukas Retschmeier

Development of a Sound Plugin for SetlX

Figure 3.4: Extraction from the Map Table

3 addPattern("2","V0 A5i F#5s G5s B5s G6s V1 B3q Ri V2 G4q Ri");

4 // [...]

5 addPattern("174","V0 G5i C5i E5i V1 E4s G4s E4s G4s E4s G4s V2 C4s Rs C4s Rs C4s

Rs");

6 addPattern("175","V0 E6s C6s B5s D6s G6i V1 G4i G3i Ri V2 Rq.");

7 mapTable_firstPart := [

8 [96, 32, 69, 40, 148, 104, 158, 119, 98, 3, 54],

9 [22,6,95,17,74,157,60,84,142,87,130],

10 [141,128,158,113,163,27,171,114,42,165,10],

11 [41,69,19,85,45,167,53,50,156,61,103],

12 [108,146,159,161,80,154,99,140,75,135,28],

13 [122,46,55,2,97,68,133,86,129,47,37],

14 [11,134,110,159,36,118,21,169,62,147,106],

15 [30,81,24,100,107,91,127,94,123,33,8]

16];

17 mapTable_secondPart := [

18 [70,117,66,90,25,138,16,120,65,102,85],

19 [121,39,139,176,143,71,155,88,77,4,29],

20 [26,126,15,7,64,150,86,48,19,91,108],

21 [9,56,132,94,125,29,175,166,82,164,92],

22 [112,174,73,67,76,101,43,51,137,144,12],

37 Lukas Retschmeier

Development of a Sound Plugin for SetlX

23 [49,1858,160,136,162,168,115,39,59,124],

24 [109,116,145,58,1,23,89,72,149,178,44],

25 [14,83,79,170,99,151,172,111,8,78,191]

26];

27 choices := []; choices_sec := [];

28 for(x in {1..8}){

29 rand := rnd({1..12});

30 randP2 := rnd({1..12});

31 choices += [mapTable_firstPart[x][rand]];

32 choices_sec += [mapTable_secondPart[x][randP2]];

33 }

34 choices += choices_sec; // Adds the second part to the first one

35 addPattern("Song","T60");

36 for(x in choices){ addPatternsToPattern(x,"Song"); }

37 play("Song");

38 saveAsMidi("Song");

Figure 3.3.2 on page 36 shows an extraction from the implementation of the
Mozart Dicing Game in SETLX . We discuss this implementation line by line:

1. In line 2 to 6, we directly define the patterns Mozart has developed using the
addPattern()-function. Note: 180 other patterns are hidden. You can compare
the MusicStrings of the patterns to the original sheet of music shown in 3.3 on
page 36. In order to be able to play the left and right hand at the same time,
we have to use multiple voices. (V0 and V1). For example, fragment 1 can
directly be written using a MusicString shown in figure 3.5.

Figure 3.5: ”V0 F6i D6i G6i V1 F4i D4i G4i V2 Rq.”

2. In line 7 and 17, we define two map tables. We just need a two dimensional
list for this: The first entry is for the measure, the second for the bijective
mapping DiceSum↔ FragmentNumber

38 Lukas Retschmeier

Development of a Sound Plugin for SetlX

3. Lines 28 to 33 generate the random waltz. Therefore we iterate over eight
bars and create two random numbers in every iteration: One for the first part
and the other for the second.

Note: This implementation is a bit different from reality, because choosing
a random number from the set {1..12} guarantees that every pattern has the
same probability to occur. In order to be nearer to the original concept, we
could simply use two random numbers from 1 to 6 (dices) and add them. But
the author thinks that it is more interesting to keep the statistical probabilities
equal.

4. In line 31 and 32 the fragments that belong to the random numbers are added
to choices.

5. In line 34 we add the second part to the end of the first one.

6. Line 35 creates a new container pattern Song with the meta information of
tempo 60 BPM.

7. In line 36, we add all selected patterns to our song. Therefore, we iterate over
the choices-list and add each element to Song.

8. Last but not least, we want to listen to our personal waltz. Line 37 uses the
play()-function to play the song and saves it as a MIDI-file to the local file
system.

39 Lukas Retschmeier

Bibliography

[1] amandaghassaei. What is midi? http://www.instructables.com/id/

What-is-MIDI/, 2012. (16/04/18).

[2] Andrew Sorensen & Andrew Brown. jmusic - music composition in java. http:
//explodingart.com/jmusic/jmNews.html, 2009. (16/04/18).

[3] Kemal Ebcioglu. An expert system for chorale harmonization. http://

charlesames.net/pdf/KemalEbcioglu/choral.pdf, 1999. (28/03/18).

[4] David Koelle. The complete guide to jfugue. http://www.jfugue.org/4/

jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf, 2015. (16/04/18).

[5] John A. Maurer. A brief history of algorithmic composition. https://ccrma.

stanford.edu/~blackrse/algorithm.html#mozart, 1999. (28/03/18).

[6] Prof. Karl Stroetmann. setlx. http://download.randoom.org/setlX/

tutorial.pdf, 2017. (26/04/18).

[7] Aiva Technologies. Aiva company homepage. http://www.aiva.ai/, 2018.
(28/03/18).

40

http://www.instructables.com/id/What-is-MIDI/
http://www.instructables.com/id/What-is-MIDI/
http://explodingart.com/jmusic/jmNews.html
http://explodingart.com/jmusic/jmNews.html
http://charlesames.net/pdf/KemalEbcioglu/choral.pdf
http://charlesames.net/pdf/KemalEbcioglu/choral.pdf
http://www.jfugue.org/4/jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf
http://www.jfugue.org/4/jfbmrkklprpp/TheCompleteGuideToJFugue-v1.pdf
https://ccrma.stanford.edu/~blackrse/algorithm.html#mozart
https://ccrma.stanford.edu/~blackrse/algorithm.html#mozart
http://download.randoom.org/setlX/tutorial.pdf
http://download.randoom.org/setlX/tutorial.pdf
http://www.aiva.ai/

	List of Figures
	Introduction
	Scope of the Document
	Purpose of the Document
	Prerequisites

	Theory
	What is SetlX ?
	MIDI File Format
	The JFugue 5.0 Java Framework
	Functionalities
	Advantages over JMusic
	A Simple JFugue Example

	Using JFugue MusicString
	Octaves
	Duration
	Chords
	MusicString
	Additional Information
	Examples For MusicString

	Progressions
	Example: Pop Progression

	Triplets

	Method
	Development Environment
	Setting up Directories for the Sound Plugin
	Add Sound-Plugin as Maven Subproject
	Modifiying the Compilation Scripts

	Integration of JFugue into SetlX
	JFugue 5.0 and maven
	Architecture
	Packages
	Data Flow Graph
	Storage for Music Information
	Main Class
	User Defined Functions

	Exception Handling
	Application Programming Interface (API)
	addChordProgression
	addPattern
	addPatternsToPattern
	addRhythm
	addToPattern
	allChordsAs
	duplicatePattern
	eachChordAs
	getPatternStats
	loadMidi
	modifyPatternProperty
	play
	playTone
	removeMusic
	saveAsMidi
	saveAsPattern
	setKeyForChordProgression
	showMusic
	stopTones

	The Mozart Dicing Game
	A Description of the Game
	Implementation in SetlX

	Bibliography

