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Motivation

SEMITOTAL DOMINATING SET

Input Graph G = (V,E), k € N
Question Exists ds D C V with |D| < k such that
Vdy € D :3dy € D \ {dl} with d(dl,dz) <2?

® The semitotal domination number is the minimum cardinality of an sds of G,
denoted as 2 (G).

e Observation: v(G) < %2(G) < ~t(G)
® We say d; witnesses ds (and vice versa)
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NP-hard? We expect problem to be at least exponential

Idea: Limit combinatorial explosion to some aspect of the problem

Goal: Find an algorithm running in time O(f(k) - n¢) for some parameter k
In this work: by solution size
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Parameterized Complexity TUTI

NP-hard? We expect problem to be at least exponential

¢ |dea: Limit combinatorial explosion to some aspect of the problem

Goal: Find an algorithm running in time O(f(k) - n¢) for some parameter k
¢ |n this work: by solution size

¢ Techniques: Kernelization, Bounded Search Trees, ...
If possible, the problem is fixed-parameter tractable.
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Fixed-Parameter Intractability

Class NP splits into whole hierarchy W [i] in parameterized setting
Problems at least W|1]-hard probably fixed-parameter intractable
DOMINATING SET is W[2]-complete

Tool for Proving Hardness: FPT Reductions, preserving the parameter

8/46



Master’s

Thesis I u I I
Presentation Complexity Landscape I

Lukas
Retschmeier
Graph Class DOMINATING SET SEMITOTAL DOMINATING SET  TOTAL DOMINATING SET
classical Parameterized classical Parameterized classical Parameterized
bipartite NPc [4]  W([2] [40] NPc [26] W ([2] (We) NPc [33] ?
line graph of bipartite NPc[29] ? NPc[19] ? NPc [36] ?
circle NPc[27] W[1][7] NPc[28] ? NPc [36] W[1][7]
chordal NPc[6]  W/[2] [40] NPc [26] W[2] (We) NPc [38] W([1][11]
s-chordal , s > 3 NPc [34] W([2][34] ? ? NPc [34] W(1][34]
split NPc [4]  W([2][40] NPc [26] W (2] (We) NPc [38] W[1][11]
3-claw-free NPc [14] FPT[14] ? ? NPc[36] ?
t-claw-free, t > 3 NPc [14] W[2] [14] ? ? NPc [36] ?
chordal bipartite NPc [37] ? NPc[26] ? P [15]
planar NPc[20] FPT[2] NPc FPT (We) NPc FPT [21]
undirected path NPc[6] FPT[18] NPc [25] ? NPc[32] ?
dually chordal P [8] ?1 P [31]
strongly chordal P[17] P [41] NPc [17]
AT-free P [30] P [28] P [30]
tolerance P [23] ? ?
block P[17] P [25] P [10]
interval P[12] P [39] P 5]
bounded clique-width P[13] P[13] P[13]
bounded mim-width P[3,9] P[19] P[3,9]
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hardness

Warmup: Intractability Results
W [2]-hard on split, chordal and bipartite graphs

¢ Split Graph: G = Clique + IndependentSet
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Split Graphs

TUTI

SEMITOTAL DOMINATING SET on split and chordal graphs is W[2]-hard
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SEMITOTAL DOMINATING SET on split and chordal graphs is W[2]-hard

Proof by fpt-reduction from DOMINATING SET on split graphs:
© Observe: Any ds D directly admits a sds D’.

@ Length of longest shortest path exactly 3
® Ifde (INnD),flipinto K
@O Parameter k' = k
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Proof by fpt-reduction from DOMINATING SET on bipart. graphs:
© Construct Add new neighbor to each vertex and add d, ds, u1, uo
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Proof by fpt-reduction from DOMINATING SET on bipart. graphs:
© Construct Add new neighbor to each vertex and add d, ds, u1, uo

® Ifds DinG,then D' = DU {dy,ds} is sdsin G
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SEMITOTAL DOMINATING SET on bipartite graphs is W [2]-hard

Proof by fpt-reduction from DOMINATING SET on bipart. graphs:
© Construct Add new neighbor to each vertex and add d1, do, u1, us
® Ifds DinG,then D' = DU {dy,ds} is sdsin G

® Assume sds D' in G'. If a; € D' (b;), flip. D = D'\ {di,d2} isdsin G
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Kernelization

® Idea: Preprocess an instance using Reduction Rules until hard kernel
bounded by f(k) is found.

TUTI
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® |dea: Preprocess an instance using Reduction Rules until hard kernel is found.
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Kernelization Tm

® |dea: Preprocess an instance using Reduction Rules until hard kernel is found.
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Problem Size  Source
PLANAR DOMINATING SET 67k [16]
PLANAR TOTAL DOMINATING SET 410k [21]

PLANAR SEMITOTAL DOMINATING SET 358k  Slide 18

PLANAR EDGE DOMINATING SET 14k [24]
PLANAR EFFICIENT DOMINATING SET 84k  [24]
PLANAR RED-BLUE DOMINATING SET 43k [22]

PLANAR CONNECTED DOMINATING SET 130k  [35]
PLANAR DIRECTED DOMINATING SET Linear [1]
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Main Theorem

The Main Theorem

PLANAR SEMITOTAL DOMINATING SET parameterized by solution size admits

a linear kernel of size |V (G’)| < 358 - k.
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The Big Picture

© Split the neighborhoods of the graph G = (V, E);
® Define three reduction rules
©® Use a region decomposition to analyze the size of each region
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The Basic Principle: Regions Tm

Region (Simplified)

Given plane G and v, w € V, a region is a closed subset, such that
¢ there are two non-crossing (but possibly overlapping) boundary paths

e Every vertex in R belongs to N (v, w)
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Region (Simplified)

Given plane G and v, w € V, a region is a closed subset, such that
¢ there are two non-crossing (but possibly overlapping) boundary paths

e Every vertex in R belongs to N (v, w)
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D-Region Decomposition (cont.) TUTI

D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds D C V, a D-region decomposition is a set R of
regions with poles in D such that:
® The poles v,w € D NV (R) are only dominating vertices in the region.

® Regions are disjoint but can share border vertices
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D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds D C V, a D-region decomposition is a set R of
regions with poles in D such that:
® The poles v,w € D NV (R) are only dominating vertices in the region.

® Regions are disjoint but can share border vertices

A region is maximal, if no R € 2R such that R’ = R U {R} is a D-region
decomposition with V (R) C V (R').

23/46
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We split N(v) into three subsets:

Ni(v) ={ue N(v
Na(v) ={ue N(v

Ny(v) = N(v) \

Fori,j € [1, 3], we denote NV; ;(v

):
)
(M
) =

N(u) \ N[v] # 0}

\ Ni(v) : N(u) N Ni(v) # 0}
(v) U Na(v))

Ni(v) U N;(v).

24 /46
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Rule 1: Shrinking N;(v)

Let G = (V,E)beagraphandletv € V. If [N3(v)| > 1:
* remove N 3(v) from G,

® add {v,v'}.

* Idea: v better choice than N; 3(v)
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Ni(v,w) = {u € N(v,w) | N(u) \ (N(v,w) U{v,w}) # 0} (4)
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presii?iaon Splitting up N (v, w)

Ni(v,w) = {u € N(v,w) | N(u) \ (N(v,w) U {v,w}) # 0} (4)
Na(v,w) = {u € N(v,w) \ Ni(v,w) | N(u) N N1(v,w) # 0} (5)
N3(v,w) = N(v,w) \ (N1(v,w) U Na(v,w)) (6)

Fori,j € [1, 3], we denote N; (v, w) = N;(v,w) U Nj(v,w).

26 /46
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N2 3(1},11)) | N3(U7w) c UUGDN(U)7 |D| < 3} (7)

)

Dc
D, = {D C Nyz(v,w) U {v} | N3(v,w) C U,epN(v), |ID|<3,veD} (8)
DcC

’

Naz(v,w) U{w} | N3(v,w) C U, 5N (v), |ID| <3, we D} (9)
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Rule 2 TUm

D= {ﬁ - N2,3(U7w) | N3(U7w) - UUGDN(U)7 |D| < 3} (7)
D, = {D C Ny3(v,w) U{v} | N3(v,w) C U,epN(v), |ID|<3,veD} (8)
Dy = {D C No3z(v,w) U{w} | N3(v,w) C Uyen N (v), |ID| <3, we D} (9)

Key Idea: N 3(v,w) can always be semitotally dominated with 4 vertices.
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Rule 2 TUm

D= {ﬁ - N2,3(U7w) | N3(U7w) - UUGDN(U)7 |ﬁ| < 3} (7)
D, = {D C Ny3(v,w) U{v} | N3(v,w) C U,epN(v), |ID|<3,veD} (8)
Dy = {D C No3z(v,w) U{w} | N3(v,w) C Uyen N (v), |ID| <3, we D} (9)

Key Idea: N 3(v,w) can always be semitotally dominated with 4 vertices.
Lemma: D = () and D, = (), then any solution contains w. Simply neighborhood.

27 /46
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Rule 2

Case1:IfD=0and D, =0 and D, =0
* Remove N; 3(v, w)

¢ Add vertices v" and w’ and two edges {v, v’} and {w, w'}
® Preserve d(v,w)
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If D = () we apply the following:
Case 2/3:if D=0and D, # 0 and D, = ()
* Remove N3 3(v)

e Add {v,v'}
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Simple Regions
Simple Region [21]

A simple vw-region is a vw-region such that:
© its boundary paths have length at most 2, and

O V(R)\ {v,w} C N(v) N N(w).
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Simple Regions Tm
Simple Region [21]

A simple vw-region is a vw-region such that:
© its boundary paths have length at most 2, and

O V(R)\ {v,w} C N(v) N N(w).

Rule 3: Shrinking simple region to at most 4 vertices + preserving witness
properties.
30/ 46
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Notes

We proved, that
e all these rules are sound,

¢ only change the solution size by a function in f(k),
e and can be applied in poly-time.
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Bounding the Kernel: Vertices Outside any Region

For each d in sds D:
@ |Ni(v) \ V()| < 0][2], On Border

O |Na(v) \ V(R)| < 96 [2]: Simple regions to Ny (v, w)
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Bounding the Kernel: Vertices Outside any Region

For each d in sds D:
@ |Ni(v) \ V()| < 0][2], On Border

O |Na(v) \ V(R)| < 96 [2]: Simple regions to Ny (v, w)
O |N3(v) \ V(R)| <1, by Rule 1

32/46
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For each vw-region, we have
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For each vw-region, we have

© |N1(v,w)| < 4 (vertices on border [2])
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Bounding the Kernel: Inside a region

For each vw-region, we have
© |N1(v,w)| < 4 (vertices on border [2])

O |Na(v,w)| < 6 -4 (simple regions to Ny (v, w), Rule 3)
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Bounding the Kernel: Inside a region Tm

For each vw-region, we have
© |N1(v,w)| < 4 (vertices on border [2])

O |Na(v,w)| < 6 -4 (simple regions to Ny (v, w), Rule 3)
© |N3(v,w)| <57 (Rule2/3)
Total: |V(R)| = |{v,w} U (N1(v,w) U Na(v,w) U N3(v,w))| < 87

33/46
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Bounding the Kernel: Number of Regions Tm

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with
|D| > 3. There is a maximal D-region decomposition of G sucht that |9R]| <

3-|D| - 6.
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Let D be sds of size k. There exists a maximal D-region decomposition R such

that:
© $A has only at most 3k — 6 regions (Alber, Fellows Niedermeier [2]);

@® There are at most 97 - k vertices outside of any region;

@ Each region R € R contains at most 87 vertices.
Hence: |V|=U,cpN(v) =87-(3k—6)+97-k <358 -k

35/46



Master’s
Thesis
Presentation

Lukas
Retschmeier

Main Theorem T|.|T|

All reduction rules can be applied in poly/time, hence:
The Main Theorem

The SEMITOTAL DOMINATING SET problem parameterized by solution size
admits a linear kernel on planar graphs. There exists a polynomial-time
algorithm that, given a planar graph (G, k), either correctly reports that
(G, k) is a NO-instance or returns an equivalent instance (G’, k) such that

V(G')| < 358 - K.
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