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Example: γ(G) < γt2(G) < γt(G)

DOMINATING SET SEMITOTAL DOMINATING SET TOTAL DOMINATING SET

d1 d1 d1

d2 d2 d2

d3d3

d4
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Motivation

SEMITOTAL DOMINATING SET

Input Graph G = (V,E), k ∈ N
Question Exists ds D ⊆ V with |D| ≤ k such that

∀d1 ∈ D : ∃d2 ∈ D \ {d1} with d(d1, d2) ≤ 2?

• The semitotal domination number is the minimum cardinality of an sds of G,
denoted as γt2(G).

• Observation: γ(G) ≤ γt2(G) ≤ γt(G)
• We say d1 witnesses d2 (and vice versa)
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Parameterized Complexity

• NP-hard? We expect problem to be at least exponential
• Idea: Limit combinatorial explosion to some aspect of the problem
• Goal: Find an algorithm running in time O(f(k) · nc) for some parameter k
• In this work: by solution size
• Techniques: Kernelization, Bounded Search Trees, ...

If possible, the problem is fixed-parameter tractable.
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Fixed-Parameter Intractability

• Class NP splits into whole hierarchy W [i] in parameterized setting
• Problems at least W [1]-hard probably fixed-parameter intractable
• DOMINATING SET is W [2]-complete
• Tool for Proving Hardness: FPT Reductions, preserving the parameter
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Complexity Landscape I

Graph Class DOMINATING SET SEMITOTAL DOMINATING SET TOTAL DOMINATING SET

classical Parameterized classical Parameterized classical Parameterized
bipartite NPC [4] W [2] [40] NPC [26] W [2] (We ) NPC [33] ?
line graph of bipartite NPC [29] ? NPC [19] ? NPC [36] ?
circle NPC [27] W [1] [7] NPC [28] ? NPC [36] W [1] [7]
chordal NPC [6] W [2] [40] NPC [26] W [2] ( We ) NPC [38] W [1] [11]
s-chordal , s > 3 NPC [34] W [2] [34] ? ? NPC [34] W [1] [34]
split NPC [4] W [2] [40] NPC [26] W [2] (We) NPC [38] W [1] [11]
3-claw-free NPC [14] FPT [14] ? ? NPC [36] ?
t-claw-free, t > 3 NPC [14] W [2] [14] ? ? NPC [36] ?
chordal bipartite NPC [37] ? NPC [26] ? P [15]
planar NPC [20] FPT [2] NPC FPT (We) NPC FPT [21]
undirected path NPC [6] FPT [18] NPC [25] ? NPC [32] ?
dually chordal P [8] ?1 P [31]
strongly chordal P [17] P [41] NPC [17]
AT-free P [30] P [28] P [30]
tolerance P [23] ? ?
block P [17] P [25] P [10]
interval P [12] P [39] P [5]

bounded clique-width P [13] P [13] P [13]
bounded mim-width P [3, 9] P [19] P [3, 9]
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Complexity Landscape II

perfect

Line Graph of
Bipartite

comparability

tolerance ?

AT-free

chordal

split

k-tree, fixed k

cocomparability

tree

circle

chordal
Bipartite

bipartite

Circular k-trapezoid

k-trapezoid
trapezoid

bounded tolerance

permutation

bipartite permutation

convex

interval

threshold

Dilworth k

cograph

circular arc

dually chordal ?

strongly chordal

circular
permutation

k-polygon distance
hereditary

Free(P − 4 +
tK1), fixed k

planar

NPc

P

general

block

undirected path

triangle-free
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Warmup: Intractability Results
W [2]-hard on split, chordal and bipartite graphs

• Split Graph: G = Clique + IndependentSet

11 / 46
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Split Graphs

SEMITOTAL DOMINATING SET on split and chordal graphs is W [2]-hard

K
d1

d2

d3d4

d5

K
d1

d2

d3d4

d5
−→

Proof by fpt-reduction from DOMINATING SET on split graphs:
1 Observe: Any ds D directly admits a sds D’.

2 Length of longest shortest path exactly 3
3 If d ∈ (I ∩D), flip into K

4 Parameter k′ = k

12 / 46
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Bipartite Graphs

SEMITOTAL DOMINATING SET on bipartite graphs is W [2]-hard

x1

xm

y1

yn

b1

bn

a1

am

Km,n

d2d1
u1 u2

A B

Proof by fpt-reduction from DOMINATING SET on bipart. graphs:
1 Construct Add new neighbor to each vertex and add d1, d2, u1, u2

2 If ds D in G, then D′ = D ∪ {d1, d2} is sds in G′

3 Assume sds D′ in G′. If ai ∈ D′ (bi), flip. D = D′ \ {d1, d2} is ds in G

13 / 46
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A Linear Kernel for PLANAR SEMITOTAL DOMINATING SET
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Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel
bounded by f(k) is found.
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Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

(I, k) ∈ Q

O (nc)

(I ′, k′) ∈ Q

g(k)

n
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Related Works

Problem Size Source
PLANAR DOMINATING SET 67k [16]
PLANAR TOTAL DOMINATING SET 410k [21]
PLANAR SEMITOTAL DOMINATING SET 358k Slide 18

PLANAR EDGE DOMINATING SET 14k [24]
PLANAR EFFICIENT DOMINATING SET 84k [24]
PLANAR RED-BLUE DOMINATING SET 43k [22]
PLANAR CONNECTED DOMINATING SET 130k [35]
PLANAR DIRECTED DOMINATING SET Linear [1]

17 / 46
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Main Theorem

The Main Theorem

PLANAR SEMITOTAL DOMINATING SET parameterized by solution size admits
a linear kernel of size |V (G′)| ≤ 358 · k.

18 / 46
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The Big Picture

1 Split the neighborhoods of the graph G = (V,E);
2 Define three reduction rules

3 Use a region decomposition to analyze the size of each region

19 / 46
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The Basic Principle: Regions

Region (Simplified)

Given plane G and v, w ∈ V , a region is a closed subset, such that
• there are two non-crossing (but possibly overlapping) boundary paths
• Every vertex in R belongs to N(v, w)
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Region (Simplified)

Given plane G and v, w ∈ V , a region is a closed subset, such that
• there are two non-crossing (but possibly overlapping) boundary paths
• Every vertex in R belongs to N(v, w)
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D-Region Decomposition

d1

d2
d3

22 / 46



Master’s
Thesis

Presentation

Lukas
Retschmeier

Motivation

Theory

Landscape

W [2]
hardness
Split

Bipartite

Kernel
Definitions

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusions

References

D-Region Decomposition (cont.)
D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V,E) and sds D ⊆ V , a D-region decomposition is a set R of
regions with poles in D such that:
• The poles v, w ∈ D ∩ V (R) are only dominating vertices in the region.
• Regions are disjoint but can share border vertices

A region is maximal, if no R ∈ R such that R′ = R ∪ {R} is a D-region
decomposition with V (R) ( V (R′).

d1

d2
d3
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Splitting Up N(v)

v

N(v)

We split N(v) into three subsets:

N1(v) = {u ∈ N(v) : N(u) \N [v] 6= ∅} (1)

N2(v) = {u ∈ N(v) \N1(v) : N(u) ∩N1(v) 6= ∅} (2)

N3(v) = N(v) \ (N1(v) ∪N2(v)) (3)

For i, j ∈ [1, 3], we denote Ni,j(v) := Ni(v) ∪Nj(v).
24 / 46
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Rule 1: Shrinking N3(v)

Let G = (V,E) be a graph and let v ∈ V . If |N3(v)| ≥ 1:
• remove N2,3(v) from G,
• add {v, v′}.

→

v′

v v

G G′

• Idea: v better choice than N2,3(v)
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Splitting up N(v, w)

v

w

N(v, w)

z

N1(v, w) = {u ∈ N(v, w) | N(u) \ (N(v, w) ∪ {v, w}) 6= ∅} (4)

N2(v, w) = {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅} (5)

N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)) (6)

For i, j ∈ [1, 3], we denote Ni,j(v, w) = Ni(v, w) ∪Nj(v, w).

26 / 46



Master’s
Thesis

Presentation

Lukas
Retschmeier

Motivation

Theory

Landscape

W [2]
hardness
Split

Bipartite

Kernel
Definitions

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusions

References

Splitting up N(v, w)

v

w

N(v, w)

z

N1(v, w) = {u ∈ N(v, w) | N(u) \ (N(v, w) ∪ {v, w}) 6= ∅} (4)

N2(v, w) = {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅} (5)

N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)) (6)

For i, j ∈ [1, 3], we denote Ni,j(v, w) = Ni(v, w) ∪Nj(v, w).

26 / 46



Master’s
Thesis

Presentation

Lukas
Retschmeier

Motivation

Theory

Landscape

W [2]
hardness
Split

Bipartite

Kernel
Definitions

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusions

References

Splitting up N(v, w)

v

w

N(v, w)

z

N1(v, w) = {u ∈ N(v, w) | N(u) \ (N(v, w) ∪ {v, w}) 6= ∅} (4)

N2(v, w) = {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅} (5)

N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)) (6)

For i, j ∈ [1, 3], we denote Ni,j(v, w) = Ni(v, w) ∪Nj(v, w).

26 / 46



Master’s
Thesis

Presentation

Lukas
Retschmeier

Motivation

Theory

Landscape

W [2]
hardness
Split

Bipartite

Kernel
Definitions

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusions

References

Splitting up N(v, w)

v

w

N(v, w)

z

N1(v, w) = {u ∈ N(v, w) | N(u) \ (N(v, w) ∪ {v, w}) 6= ∅} (4)

N2(v, w) = {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅} (5)

N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)) (6)

For i, j ∈ [1, 3], we denote Ni,j(v, w) = Ni(v, w) ∪Nj(v, w).

26 / 46



Master’s
Thesis

Presentation

Lukas
Retschmeier

Motivation

Theory

Landscape

W [2]
hardness
Split

Bipartite

Kernel
Definitions

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusions

References

Rule 2

v

w

N(v, w)

v1

v2

v3

v4

D = {D̃ ⊆ N2,3(v, w) | N3(v, w) ⊆ ∪v∈D̃N(v), |D̃| ≤ 3} (7)

Dv = {D̃ ⊆ N2,3(v, w) ∪ {v} | N3(v, w) ⊆ ∪v∈D̃N(v), |D̃| ≤ 3, v ∈ D̃} (8)

Dw = {D̃ ⊆ N2,3(v, w) ∪ {w} | N3(v, w) ⊆ ∪v∈D̃N(v), |D̃| ≤ 3, w ∈ D̃} (9)

Key Idea: N2,3(v, w) can always be semitotally dominated with 4 vertices.
Lemma: D = ∅ and Dv = ∅, then any solution contains w. Simply neighborhood.

27 / 46
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Rule 2

Case 1: If D = ∅ and Dv = ∅ and Dw = ∅
• Remove N2,3(v, w)
• Add vertices v′ and w′ and two edges {v, v′} and {w,w′}
• Preserve d(v, w)

wv wv

v′
w′

y

y′→
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Rule 2
If D = ∅ we apply the following:
Case 2/3: if D = ∅ and Dv 6= ∅ and Dw = ∅
• Remove N2,3(v)
• Add {v, v′}

v

w
→

N(v)

v

w

N(v)

d1

d2

v′
d1

d2
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Simple Regions
Simple Region [21]

A simple vw-region is a vw-region such that:
1 its boundary paths have length at most 2, and

2 V (R) \ {v, w} ⊆ N(v) ∩N(w).

v w

N(v, w)

Rule 3: Shrinking simple region to at most 4 vertices + preserving witness
properties.
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Notes

We proved, that
• all these rules are sound,
• only change the solution size by a function in f(k),
• and can be applied in poly-time.
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Bounding the Kernel: Vertices Outside any Region

d1

d2
d3

1

For each d in sds D:
1 |N1(v) \ V (R)| ≤ 0 [2], On Border

2 |N2(v) \ V (R)| ≤ 96 [2]: Simple regions to N1(v, w)
3 |N3(v) \ V (R)| ≤ 1, by Rule 1
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Bounding the Kernel: Inside a region

d1

d2
d3

1

2

For each vw-region, we have
1 |N1(v, w)| ≤ 4 (vertices on border [2])

2 |N2(v, w)| ≤ 6 · 4 (simple regions to N1(v, w), Rule 3)

3 |N3(v, w)| ≤ 57 (Rule 2 / 3)
Total: |V (R)| = |{v, w} ∪ (N1(v, w) ∪N2(v, w) ∪N3(v, w))| ≤ 87
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Bounding the Kernel: Inside a region

d1

d2
d3

1

2

For each vw-region, we have
1 |N1(v, w)| ≤ 4 (vertices on border [2])

2 |N2(v, w)| ≤ 6 · 4 (simple regions to N1(v, w), Rule 3)

3 |N3(v, w)| ≤ 57 (Rule 2 / 3)
Total: |V (R)| = |{v, w} ∪ (N1(v, w) ∪N2(v, w) ∪N3(v, w))| ≤ 87
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Bounding the Kernel: Number of Regions

d1

d2
d3

1

2

3
...

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with
|D| ≥ 3. There is a maximal D-region decomposition of G sucht that |R| ≤
3 · |D| − 6.
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Summary: Bounding Kernel Size

Let D be sds of size k. There exists a maximal D-region decomposition R such
that:

1 R has only at most 3k − 6 regions (Alber, Fellows Niedermeier [2]);

2 There are at most 97 · k vertices outside of any region;

3 Each region R ∈ R contains at most 87 vertices.
Hence: |V | =

⋃
v∈D N(v) = 87 · (3k − 6) + 97 · k < 358 · k
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Main Theorem

All reduction rules can be applied in poly/time, hence:

The Main Theorem

The SEMITOTAL DOMINATING SET problem parameterized by solution size
admits a linear kernel on planar graphs. There exists a polynomial-time
algorithm that, given a planar graph (G, k), either correctly reports that
(G, k) is a NO-instance or returns an equivalent instance (G′, k) such that
|V (G′)| ≤ 358 · k′.
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Conclusions

Results:
• Given an overview over the status
• SEMITOTAL DOMINATING SET is W [1] for chordal, split and bipartite graphs
• exists linear kernel of size 358 · k when parameterized by solution size

Future Work:
• Improve kernel size and do an empirical evaluation
• Resolve complexities for Circle, chordal bipartite and undirected path graphs
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? Any Questions ?
· · · Thank you for your attention! · · ·
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